
Chapter 7

Applications of Integration

The first three sections in this chapter use Maple to compute the standard
geometric applications of integration: areas, volumes, arc lengths and surface
areas. The last section uses Fourier series to approximate functions by sums of
multiples of sines and cosines.

7.1 Area

We present two examples in this section: the area between a curve and the
x-axis, and the area between two curves.

Example 1: Find the area that lies between the graph of

f(x) = −0.128x3 + 1.728x2 − 5.376x + 2.864

and the x-axis.

Solution: Start by inputting an expression for f into Maple.

> f:=-0.128*x^3+1.728*x^2-5.376*x+2.864;

f := −0.128x3 + 1.728x2 − 5.376x + 2.864

Now plot f over an interval that shows all points where f crosses the x-axis.
By trial and error, the interval −2 ≤ x ≤ 10 will do.

> plot(f,x=-2..10);
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The graph of f crosses the x-axis at three points—between 0 and 1, between 3
and 4, and between 9 and 10. Use fsolve to find these roots and assign them
to variablea, say a, b and c.

> a,b,c:=fsolve(f=0,x);

a, b, c := 0.6697777844, 3.631759112, 9.198463104

Note that all the roots can be found with fsolve without specifying a range
for x, because f is a polynomial. From the plot, it is evident that the graph of
f is below the x-axis between a and b and above the x-axis between b and c.
Therefore, the area is the following sum of integrals:

A = −
∫ b

a

f dx +

∫ c

b

f dx

In Maple we enter

> -Int(f,x=a..b)+Int(f,x=b..c); A:=value(%);

−
∫ 3.631759112

0.6697777844

− 0.128x3 + 1.728x2 − 5.376x + 2.864 dx

+

∫ 9.198463104

3.631759112

− 0.128x3 + 1.728x2 − 5.376x + 2.864 dx

A := 25.05016797

As mentioned in the last chapter, the Int command (with an uppercase I)
displays the integral without computing its value so that it can be checked for
typing errors. Then the value command evaluates it. The area of interest is
about 25.05 square units.

Example 2: Compute the area between the graph of f (defined above) and
the graph of

g(x) = lnx

Solution: Once again, we start by defining g as an expression in Maple.

> g:=ln(x);

g := ln(x)
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Now plot f and g on the same coordinate axes with the command

> plot({f,g},x=-2..10);
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The plot shows three points of intersection, which can again be found with
fsolve, but this time you need to specify ranges since g is not a polynomial.

> a:=fsolve(f=g,x); b:=fsolve(f=g,x=4..5);
> c:=fsolve(f=g,x=8..9);

a := 0.7587367455

b := 4.270958448

c := 8.793410794

The graph of f is below the graph of g between a and b while g is below f
between b and c. Therefore, the area between the graphs is

A =

∫ b

a

(g − f) dx +

∫ c

b

(f − g) dx

In Maple this is entered as

> Int(g-f,x=a..b)+Int(f-g,x=b..c); A:=value(%);

∫ 4.270958448

0.7587367455

ln(x) + 0.128x3 − 1.728x2 + 5.376x− 2.864 dx

+

∫ 8.793410794

4.270958448

− 0.128x3 + 1.728x2 − 5.376x + 2.864− ln(x) dx

A := 18.17292990

7.2 Volume

We look at volume by slicing and volume of revolution.

Volume by Slicing: To calculate a volume by slicing, the first step is to derive
an expression that represents the cross sectional area. Then this expression is
integrated over the appropriate interval.

Example 1: The base of a solid is bounded by the curves y = −x2+5x−2 and
y = x. The cross sections perpendicular to the x-axis are equilateral triangles.
Find the volume of the solid.
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Solution: First, define f and g in Maple and graph them

> f:=-x^2+5*x-2; g:=x;

f := −x2 + 5x− 2

g := x

> plot({f,g},x=0..4);
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From the plot, notice that f and g cross at two points: one between x = 0 and
x = 1 and the other between x = 3 and x = 4. Find these roots using fsolve

and assign them to the variables a and b

> a,b:=fsolve(f=g,x);

a, b := 0.5857864376, 3.414213562

The cross section of this solid is an equilaterial triangle of side

> s:=f-g;

s := −x2 + 4x− 2

The area of an equilaterial triangle is A =

√
3 s2

4
. So the cross sectional area is

> A:=sqrt(3)/4*s^2;

A :=

√
3 (−x2 + 4x− 2)2

4
The total volume of this solid is obtained by integrating this expression over the
interval a ≤ x ≤ b.

> Int(A,x=a..b); V:=value(%);
∫ 3.414213562

0.5857864376

√
3 (−x2 + 4x− 2)2

4
dx

V := 2.612789059
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Volume of Revolution: To calculate a volume of revolution, the first step is
to determine if it is an x- or y-integral. The second step is to determine if a slice
rotates into a disk, washer or cylindrical shell. The third step is to compute the
integral with the appropriate formula. Assuming x-integrals, the formulas are:

∫ b

a

πR2 dx . . . . . . . . . disk

R is the radius of the disk.
∫ b

a

π(R2 − r2) dx . . . washer

R and r are the outer and inner radii of the washer.
∫ b

a

2πrh dx . . . . . . . . cylinder (shells)

r and h are the radius and height of the cylinder.

Example 2: Consider the region that is bounded by the curves y = −x2+5x−2
and y = x. Find the volume of the solid that is obtained by revolving this region
about the x-axis.

Solution: The region is the same as in Example 1. As in that example, we
want to do an x-integral. So we graph the curves with a slice perpendicular to
the x-axis.

> plot([f,g, [[2.5,subs(x=2.5,f)], [2.5,subs(x=2.5,g)]]],
> x=0..4, thickness = [2,2,5]);
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Notice that the third quantity plotted is the line segment from (2.5, f(2.5)) to
(2.5, g(2.5)) and it is given thickness 5 by putting the quantities to be plotted
and the corresponding parameters in square brackets. When this slice is rotated
about the x-axis, it sweeps out a washer. The outer radius is f and the inner
radius is g. So the volume is

> Int(Pi*(f^2-g^2),x=a..b); V:=value(%);
∫ 3.414213562

0.5857864376

π ((−x2 + 5x− 2)2 − x2) dx

V := 66.34705188
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Example 3: Consider the region that is bounded by the curves y = −x2+5x−2
and y = x. Find the volume of the solid that is obtained by revolving this region
about the y-axis.

Solution: The region is the same as in Examples 1 and 2. Again we want
to do an x-integral. The graph of the curves and a slice perpendicular to the
x-axis is the same as in Example 2, but when this slice is rotated about the
y-axis, it sweeps out a cylindrical shell. The radius is x and the height is f-g.
So the volume is

> Int(2*Pi*x*(f-g),x=a..b); V:=value(%);
∫ 3.414213562

0.5857864376

2π x (−x2 + 4x− 2) dx

V := 47.39075134

7.3 Arc Length and Surface Area

Most textbook problems on arc length and surface area are contrived so that
the integrals are doable. Not so in the real world.

Arc Length of a Lissajous Figure: A Lissajous figure is a curve in the plane
which may be parametrized as

(x, y) = (cos(pt), sin(qt))

where p and q are positive integers. For example here is a Lissajous figure with
p = 3 and q = 4.

> plot([cos(3*t),sin(4*t),t=0..2*Pi]);
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As t varies from 0 to 2π, the x-coordinate oscillates p = 3 times while the y-
coordinate oscillates q = 4 times. (Here, 3 bumps on the left and right and 4
bumps on the top and bottom.)
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Example 1: Find the arc length of the Lissajous figure with p = 3 and q = 4.

Solution: The arc length of a parametric curve is given by

L =

∫ b

a

√

(

dx

dt

)2

+

(

dy

dt

)2

dt

So define x(t) and y(t) and take their derivatives:

> xt,yt:=cos(3*t),sin(4*t);

xt , yt := cos(3 t), sin(4 t)

> Dxt:=diff(xt,t); Dyt:=diff(yt,t);

Dxt := −3 sin(3 t)

Dyt := 4 cos(4 t)

Then the arclength is

> Int(sqrt(Dxt^2+Dyt^2),t=0..2*Pi); L:=value(%);
∫ 2 π

0

√

9 sin(3 t)2 + 16 cos(4 t)2 dt

L :=

∫ 2 π

0

√

9 sin(3 t)2 + 16 cos(4 t)2 dt

Oops! Maple cannot do it exactly. (No one can!) So do it numerically:

> L:=evalf(%);

L := 21.23721523

Surface Area of Revolution: When a curve y = f(x) is rotated about an
axis, the area of the resulting surface is given by

A =

∫ b

a

2πr

√

1 +

(

dy

dx

)2

dx

where r is the radius of revolution. Specifically, r = x if it is rotated about the
y-axis and r = y = f(x) if it is rotated about the x-axis.

Example 2: The curve y = 3 + cos x for 0 ≤ x ≤ 4π is revolved about the
x-axis. Find the surface area.
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Solution: Enter the function and compute its derivative:

> y1:=3+cos(x);

y1 := 3 + cos(x)

> Dy1:=diff(y1,x);

Dy1 := −sin(x)

The curve is rotated about the x-axis; so r = y. So the surface area is

> Int(2*Pi*y1*sqrt(1+Dy1^2),x=0..4*Pi); A:=value(%);
∫ 4 π

0

2π (3 + cos(x))
√

1 + sin(x)2 dx

A := 48π
√

2 EllipticE(

√
2

2
)− π ln(

√
2− 1) +

1

2
π ln(3− 2

√
2)

The EllipticE function is not very informative. So get a decimal approximation:

> A:=evalf(%);

A := 288.0361274

Example 3: The curve y = 3 + cos x for 0 ≤ x ≤ 4π is revolved about the
y-axis. Find the surface area.

Solution: The curve is the same as in Exercise 2, but it is rotated about the
y-axis; so r = x. So the surface area is

> Int(2*Pi*x*sqrt(1+Dy1^2),x=0..4*Pi); A:=value(%);
∫ 4 π

0

2π x
√

1 + sin(x)2 dx

A :=

∫ 4 π

0

2π x
√

1 + sin(x)2 dx

Maple cannot do it exactly. So do it numerically:

> A:=evalf(%);

A := 603.2614546

7.4 Introduction to Fourier Series - Cosine Ex-

pansions

This is an optional section.

One of the interesting applications of integration is the approximation of
functions. We will demonstrate in this section that smooth functions can be
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approximated by sums of trigonometric functions called Fourier series. More
precisely, we will demonstrate that a function on an interval of the form [0, L]
can be approximated by sums of the functions

1, cos
(πx

L

)

, cos

(

2πx

L

)

, . . . , cos
(nπx

L

)

, . . . (7.1)

To do this, we need to learn some properties of the functions above. First,
notice that

∫ L

0

1 dx = L.

and if k is a positive integer, then

∫ L

0

cos

(

kπx

L

)

dx =
L

kπ
sin(kπ) = 0

Further, if k is a positive integer, then

∫ L

0

cos2
(

kπx

L

)

dx =
L

2

(

1 +
sin 2kπ

2kπ

)

=
L

2

and if k and m are positive integers with k 6= m, then

∫ L

0

cos

(

kπx

L

)

cos
(mπx

L

)

dx = 0

(Do the integration and see for yourself!)

Let’s use this information to find a way to approximate a function f(x) in
the form

f(x) ≈ a0 + a1 cos
(πx

L

)

+ · · ·+ an cos
(nπx

L

)

(7.2)

on the interval [0, L].

In order to determine the coefficient a0, we simply integrate both sides of
(7.2) above and obtain

∫ L

0

f(x) dx = a0L

(since all the other terms integrate to zero). This gives

a0 =
1

L

∫ L

0

f(x) dx (7.3)

(Note that a0 is the average value of f(x) on the interval [0, L].)

Next, we obtain a formula for a1 by multiplying both sides of (7.2) by

cos
(πx

L

)

and integrating. This yields

∫ L

0

f(x) cos
(πx

L

)

dx =

∫ L

0

a1 cos2
(πx

L

)

dx = a1

L

2
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since all the other terms integrate to zero. Consequently, we have

a1 =
2

L

∫ L

0

f(x) cos
(πx

L

)

dx

a2 can be found in a similar manner by multiplying both sides of (7.2) by

cos

(

2πx

L

)

and integrating. In this case we obtain

a2 =
2

L

∫ L

0

f(x) cos

(

2πx

L

)

dx

In general, for k = 1, 2, . . . , n, we obtain

ak =
2

L

∫ L

0

f(x) cos

(

kπx

L

)

dx (7.4)

The numbers a0, a1, . . . , an are called the Fourier cosine coefficients of the
function f(x) on the interval [0, L].

Definition: Let f : [0, L] → R be a smooth function. If n is a positive integer
then the nth order Fourier cosine expansion for f(x) on the interval [0, L]
is

a0 +

n
∑

k=1

ak cos

(

kπx

L

)

where a0 and ak are given by the formulas in (7.3) and (7.4) respectively.

Example: Compute the 8th order Fourier cosine expansion for the function
f(x) = x2 − 1 on the interval [0, 3]. Plot f(x) and its Fourier cosine expansion.

Solution: Using the formulas above, we can input f and compute the Fourier
coefficients as follows:

> f:=x^2-1;

f := x2 − 1

> 1/3*Int(f,x=0..3); a[0]:=value(%);

1

3

∫ 3

0

x2 − 1 dx

a0 := 2
> 2/3*Int(f*cos(k*Pi*x/3),x=0..3);
> a[k]:=value(%) assuming k::posint;

2

3

∫ 3

0

(x2 − 1) cos(
k π x

3
) dx

ak :=
36 (−1)k

k2 π2

Notice the use of the assume facility to say that k is a positive integer. Try this
command without the assumption. (Read the help pages by typing ?assume

and ?assuming.)
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Consequently, the 8th order Fourier cosine expansion for f(x) = x2 − 1 on
the interval [0, 3] is

> fcos:=a[0] + sum(a[k]*cos(k*Pi*x/3),k=1..8);

fcos := 2−
36 cos(

π x

3
)

π2
+

9 cos(
2π x

3
)

π2
− 4 cos(π x)

π2
+

9

4

cos(
4π x

3
)

π2

−36

25

cos(
5π x

3
)

π2
+

cos(2 π x)

π2
− 36

49

cos(
7π x

3
)

π2
+

9

16

cos(
8π x

3
)

π2

Finally, plot f(x) and this expression on [0, 3] to see the quality of the approx-
imation.

> plot({f,fcos},x=0..3);
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It is almost impossible to see a difference between the curve and the approxima-
tion. Besides some wiggles, the only deviation is near the endpoint x = 3. The
reason for the poor behavior there is simple. All of the functions in (7.1) (with
L = 3) have a zero derivative at x = 3. Since the function f(x) = x2 − 1 does
not have this property, we can expect the approximating Fourier expansion to
have some trouble near x = 3. Notice that there is no a problem at x = 0 since
f ′(0) = 0, and all of the functions in (7.1) have this property.

What happens when we look at these graphs on a larger interval? First let’s
try the interval [−3, 3]:

> plot({f,fcos},x=-3..3);
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The agreement is quite good. If you are wondering whether this will always
happen, then the answer is a definite NO! The reason it happens here is because
f(x) = x2− 1 is an even function, and all of the functions in (7.1) are also even
functions!

Finally, let’s look at a larger interval, say [−4, 10].

> plot({f,fcos},x=-4..10,-5..20);
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Notice that the Fourier cosine expansion falls away quickly outside the interval
[−3, 3]. You could say that the expansion did what it was asked to do. However,
in actuality, the fall off takes place because all of the functions in (7.1) are
periodic with period 6 (since L = 3) and f(x) is not a periodic function.

7.5 Summary

• Use fsolve to find successive points of intersection of the graphs of Maple
expressions f and g. Use Int and value or Int and evalf syntax to
compute integrals.

• Area: Integrate the difference f − g or g − f between intersection points
to find the area.

• Volumes by Slicing: A slice of the base has length given by the difference
f − g. Use this to find the area of a cross sectional slice of the solid.
Integrate this cross sectional area to get the volume.

∫ b

a

A(x) dx

• Volumes of Revolution: Determine if you need an x- or y-integral. De-
termine if a slice rotates into a disk, washer or cylindrical shell. Integrate
to get the volume:
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∫ b

a

πR2 dx . . . . . . . disk

R is the radius of the disk.
∫ b

a

π(R2 − r2) dx . washer

R and r are the outer and inner radii of the washer.
∫ b

a

2πrh dx . . . . . . cylinder (shells)

r and h are the radius and height of the cylinder.

• Arc Length: Determine if you need an x-, y- or t-integral. Integrate the
arc length differential

ds =

√

1 +

(

dy

dx

)2

dx

=

√

(

dx

dy

)2

+ 1 dy

=

√

(

dx

dt

)2

+

(

dy

dt

)2

dt

to get the arc length.

• Surface Area: Determine if you need an x-, y- or t-integral. The surface
area is the integral

∫ b

a

2πr ds

where ds is the arc length differential and r is the radius of revolution.
Specifically, r = x if it is rotated about the y-axis and r = y if it is rotated
about the x-axis.

• Fourier Cosine Series: Use Int and value to find the Fourier coef-
ficients. Use sum or Sum and value to create the Fourier cosine series
approximations.

7.6 Exercises

1. Find the area of the region that is bounded above by the curves y =
10 ln(x) and y = 4− x4 − x and below by the x-axis.

2. Consider the region in the previous exercise.

(a) Find the volume of the solid obtained by revolving this region about
the x-axis.

(b) Find the volume of the solid obtained by revolving this region about
the y-axis.
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(c) Find the volume of the solid obtained by revolving this region about
the line x = 4.

(d) Find the volume of the solid obtained by revolving this region about
the line y = 4.

3. The region in the first quadrant bounded by the coordinate axes and the
graph of y = 15 − 2x2 is revolved about the x-axis to form a solid. Use
leftsum and evalf to approximate the volume of this solid by summing
the volumes of 20, 40, 200, and 500 disks of equal thickness. Is this an
overestimate or underestimate of the volume? Repeat with rightsum.

4. Compute the volume of the solid in Exercise 3 by integration and compare
your answers.

5. The volume of a JELL-Otm mold. Consider the region above the x-
axis below the parabola that passes through the points (8, 0), (10, 4) and
(12, 0).

(a) Find the volume of the solid obtained by revolving this region about
the y-axis.

(b) Find the volume of the solid obtained by revolving this region about
the line x = 2.

(c) Find the surface area obtained by revolving the parabola about the
y-axis.

(d) Find the surface area obtained by revolving the parabola about the
line x = 2.

6. In this exercise, you are asked to calculate the approximate volume of a
bowl of depth 3 feet with circular horizontal cross sections. The measure-
ments of the radius of the cross sections versus height are given in the
following table (in feet).

Height 0.00 0.50 1.00 1.50 2.00 2.50 3.00
Radius 0.00 0.55 1.05 1.40 1.70 1.85 2.00

Find an approximate value of the volume of this bowl by adding the vol-
umes of the disks of thickness 0.5 feet and radius given by the values in
the table above.

7. Find a third degree polynomial whose graph contains every other data
point in the table of the previous exercise. Use this polynomial to compute
an approximate volume for the bowl. Compare your answer to that of the
previous exercise.
Hint: Think of the x-axis as representing depth, and enter p := ax3 +
bx2 + cx + d as an arrow-defined function. Solve four equations for the
unknowns a, b, c and d so that the graph of p passes through the points
(0, 2), (1, 1.7), (2, 1.05), and (3, 0). Graph this polynomial to check it
contains these data points.
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8. Plot the Lissajous Figure

(x, y) = (cos(pt), sin(qt))

for p = 3 and q = 2 and find its arc length. Now plot the Lissajous Figure
for p = 6 and q = 4 and find its arc length. Explain what you had to
change to get the correct arc length.

9. A circular doughnut is formed by revolving a circle of radius b centered at
x = a, y = 0 about the y-axis (a > b). Your job is to find the formula for
the volume of this doughnut and evaluate it when a = 4 and b = 3.

(a) In order to have the integral evaluate properly, you will need to com-
municate to Maple the assumptions that a > b and b > 0. Use
assume(a>b,b>0);

(b) Find the equation of the circle described above for general a and b.

(c) Review the cylindrical shell technique for finding volumes. Set up the
integral for the volume of this doughnut and use Maple’s Int and
value commands to evaluate it. Check it using Pappas’ Theorem
which says this volume is equal to the product of the area of a circle
or radius b and the circumference of a circle of radius a.

(d) Evaluate the volume in the special case where a = 4 and b = 3.

(e) To see a three-dimensional picture of this doughnut, issue the follow-
ing Maple commands.

> x1:=(4+3*cos(t))*cos(s);
> y1:=3*sin(t);
> z1:=(4+3*cos(t))*sin(s);

See if you can figure out why these three equations parameterize the
doughnut as the parameters s and t vary from 0 to 2π. Then plot
using

> plot3d([x1,y1,z1], s=0..2*Pi, t=0..2*Pi,
> scaling=constrained);

10. In this problem, your job is to find the formula for the surface area of the
doughnut in the previous problem and evaluate it when a = 4 and b = 3.

(a) Enter the assumptions that a > b and b > 0.

(b) Enter the following parametrization of the circle: x = 4 + 3 cos t,
y = 3 sin t. Plot it to check it is a circle.

(c) Enter the general parametrization: x = a + b cos t, y = b sin t and
compute the surface area of revolution for the doughnut for general a
and b. Check it using Pappas’ Theorem which says this area is equal
to the product of the circumference of a circle or radius b and the
circumference of a circle of radius a.

(d) Evaluate the surface area in the special case where a = 4 and b = 3.
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11. Generate the 5-th and 10-th order Fourier cosine expansions for sin(x) on
the interval [0, 7]. Plot each of these against the function sin(x).

12. Repeat the previous exercise with f(x) = 6− x2 on the interval [0, 4].

13. In Section 3.2, we plotted polar curves using the polarplot command
from the plots package. We now want to compute the area of the region
that lies between a polar curve r = r(θ) and the origin and between the
angles θ = a and θ = b. This area is given by

1

2

∫ b

a

r(θ)2 dθ

Compute the area that is to the left of the parabola r1(θ) =
2

1− cos(θ)
and inside the circle r2(θ) = 8.
Hint: First plot the two curves to estimate the angles where they cross.
Next use fsolve to find the angles more precisely. Then perform the
appropriate integrals using the Int and evalf commands.

14. The arc length of a polar curve r = r(θ) for a ≤ θ ≤ b, is given by

L =

∫ b

a

√

r(θ)2 + r′(θ)2 dθ

and the surface areas of revolution of this polar curve about the x- and
y-axes are, respectively

A =

∫ b

a

2πy(θ)
√

r(θ)2 + r′(θ)2 dθ

A =

∫ b

a

2πx(θ)
√

r(θ)2 + r′(θ)2 dθ

Here, x(θ) = r(θ) cos(θ) and y(θ) = r(θ) sin(θ).

(a) Plot the polar curve r = 3 + cos(θ), for 0 ≤ θ ≤ π/2.

(b) Compute the arc length of the curve r = 3 + cos(θ), for 0 ≤ θ ≤ π/2.

(c) Compute the area of the surface obtained by revolving about the
x-axis the curve r = 3 + cos(θ), for 0 ≤ θ ≤ π/2.

(d) Compute the area of the surface obtained by revolving about the
y-axis the curve r = 3 + cos(θ), for 0 ≤ θ ≤ π/2.

15. Plot the rose r = cos(5θ). Compute the area of the surface obtained by
revolving the petal for −π/10 ≤ θ ≤ π/10, first about the x-axis and then
about the y-axis. Be careful in choosing your limits of integration.


